0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
PSB 21391 H V1.3

PSB 21391 H V1.3

  • 厂商:

    EUPEC(英飞凌)

  • 封装:

    QFP44

  • 描述:

    IC TELECOM INTERFACE MQFP-44

  • 数据手册
  • 价格&库存
PSB 21391 H V1.3 数据手册
Data She et, DS 1, M arch 2001 SCOUT-P Siemens Codec with UPNTransceiver PSB 21391 Version 1.3 SCOUT-PX Siemens Codec with UPNTransceiver featuring Speakerphone functionality PSB 21393 Version 1.3 Wired Communications N e v e r s t o p t h i n k i n g . Edition 2001-03-07 Published by Infineon Technologies AG, St.-Martin-Strasse 53, D-81541 München, Germany © Infineon Technologies AG 2001. All Rights Reserved. Attention please! The information herein is given to describe certain components and shall not be considered as warranted characteristics. Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer. Information For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list). Warnings Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office. Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. Data She et, DS 1, M arch 2001 SCOUT-P Siemens Codec with UPNTransceiver PSB 21391 Version 1.3 SCOUT-PX Siemens Codec with UPNTransceiver featuring Speakerphone functionality PSB 21393 Version 1.3 Wired Communications N e v e r s t o p t h i n k i n g . PSB 21391 PSB 21393 Revision History: 2001-03-07 Previous Version: Prel. Data Sheet 09.99 Page Subjects (major changes since last revision) 29 Figure with clock signals added 59 BCL=’ 0’ changed to BCL=’1’ 81 BCL changed from ’low’ to ’high’ 107 Note regarding AXI input added 143 Recommendation regarding CRAM programming modified 157 158 BCL is inverted compared to last description (DS1); figure added 163 ’Rising’ BCL edge changed to ’falling’ edge 231 Figure 85 modified 233 Timings added 236 Power supply currents added DS 1 For questions on technology, delivery and prices please contact the Infineon Technologies Offices in Germany or the Infineon Technologies Companies and Representatives worldwide: see our webpage at http://www.infineon.com PSB 21391 PSB 21393 Table of Contents Page 1 1.1 1.2 1.3 1.4 1.5 1.6 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Pin Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7 Logic Symbol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Pin Definitions and Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9 Typical Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 General Functions and Device Architecture . . . . . . . . . . . . . . . . . . . . . . . .16 2 2.1 2.1.1 2.1.1.1 2.1.2 2.1.3 2.2 2.2.1 2.2.2 2.2.2.1 2.2.2.1.1 2.2.2.1.2 2.2.2.1.3 2.2.2.1.4 2.2.3 2.2.3.1 2.2.3.2 2.2.4 2.2.4.1 2.2.4.2 2.2.4.3 2.2.4.4 2.2.4.5 2.2.4.6 2.2.5 2.2.5.1 2.2.6 2.2.7 2.2.7.1 2.2.8 2.3 2.3.1 2.3.2 2.3.3 2.3.4 Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18 Microcontroller Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19 Serial Control Interface (SCI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20 Programming Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22 Interrupt Structure and Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26 Microcontroller Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28 IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29 IOM-2 Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30 IOM-2 Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31 Controller Data Access (CDA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33 Looping and Shifting Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34 Monitoring Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Monitoring TIC Bus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36 Synchronous Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37 Serial Data Strobe Signal and strobed Data Clock . . . . . . . . . . . . . . . . .41 Serial Data Strobe Signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41 Strobed IOM-2 Bit Clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 IOM-2 Monitor Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44 Handshake Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45 Error Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49 MONITOR Channel Programming as a Master Device . . . . . . . . . . . .51 MONITOR Channel Programming as a Slave Device . . . . . . . . . . . . .51 MONITOR Time-Out Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 MONITOR Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53 C/I Channel Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 CIC Interrupt Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54 Settings after Reset (see also chapter 7.2) . . . . . . . . . . . . . . . . . . . . . . .55 D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56 TIC Bus D-Channel Access Control . . . . . . . . . . . . . . . . . . . . . . . . . .56 Activation/Deactivation of IOM-2 Interface . . . . . . . . . . . . . . . . . . . . . . .59 UPN Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 UPN Burst Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62 Scrambler/Descrambler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64 UPN Transceiver Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Data Transfer and Delay between IOM and UPN . . . . . . . . . . . . . . . . . .65 Data Sheet 2001-03-07 PSB 21391 PSB 21393 Table of Contents 2.3.4.1 2.3.4.2 2.3.4.3 2.3.4.4 2.3.5 2.3.5.1 2.3.5.1.1 2.3.5.1.2 2.3.5.1.3 2.3.5.1.4 2.3.5.1.5 2.3.5.1.6 2.3.5.1.7 2.3.5.1.8 2.3.5.2 2.3.5.2.1 2.3.5.2.2 2.3.6 2.3.7 2.3.8 2.3.8.1 2.3.8.2 2.3.9 2.3.10 2.3.11 3 3.1 3.1.1 3.1.2 3.1.3 3.1.4 3.1.5 3.2 3.2.1 3.2.1.1 3.2.1.2 3.2.1.3 3.2.2 3.3 3.3.1 3.3.1.1 3.3.1.2 Data Sheet Page B1-, B2- and D-Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Stop/Go Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65 Available/Busy Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 T-Bit Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66 Control of UPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 Internal Layer-1 Statemachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67 State Transition Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68 States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72 C/I Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74 Receive Infos on UPN (Downstream) . . . . . . . . . . . . . . . . . . . . . . .74 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 C/I Indications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75 Transmit Infos on UPN (Upstream) . . . . . . . . . . . . . . . . . . . . . . . . .76 Example of Activation/Deactivation . . . . . . . . . . . . . . . . . . . . . . . . .77 External Layer-1 Statemachine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78 Activation initiated by the Terminal (TE, SCOUT-P(X)) . . . . . . . . . .79 Activation initiated by the Line Termination LT . . . . . . . . . . . . . . . . 80 Level Detection Power Down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Transceiver Enable/Disable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 UPN Transceiver Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Test Signals on the UPN Interface . . . . . . . . . . . . . . . . . . . . . . . . . . .82 Transmitter Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83 Receiver Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 UPN Interface Circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85 HDLC Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Message Transfer Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86 Non-Auto Mode (MDS2-0 = ’01x’) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87 Transparent Mode 0 (MDS2-0 = ’110’). . . . . . . . . . . . . . . . . . . . . . . . . . .87 Transparent Mode 1 (MDS2-0 = ’111’). . . . . . . . . . . . . . . . . . . . . . . . . . .87 Transparent Mode 2 (MDS2-0 = ’101’). . . . . . . . . . . . . . . . . . . . . . . . . . .87 Extended Transparent Mode (MDS2-0 = ’100’). . . . . . . . . . . . . . . . . . . .87 Data Reception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Structure and Control of the Receive FIFO . . . . . . . . . . . . . . . . . . . . . . .88 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88 Possible Error Conditions during Reception of Frames . . . . . . . . . . . . 91 Data Reception Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92 Receive Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94 Data Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Structure and Control of the Transmit FIFO . . . . . . . . . . . . . . . . . . . . . .96 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96 Possible Error Conditions during Transmission of Frames . . . . . . . . .98 2001-03-07 PSB 21391 PSB 21393 Table of Contents Page 3.3.1.3 3.3.2 3.4 3.5 3.5.1 3.5.2 3.6 3.7 Data Transmission Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99 Transmit Frame Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Access to IOM Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101 Extended Transparent Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 Transmitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 Receiver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102 HDLC Controller Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .104 4 4.1 4.1.1 4.2 4.2.1 4.2.2 4.2.3 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.3.6 4.4 4.4.1 4.4.2 4.4.3 4.4.3.1 4.4.3.2 4.4.4 4.4.4.1 4.4.4.2 4.4.4.3 4.4.5 4.4.6 4.5 4.6 4.7 4.8 4.8.1 4.8.1.1 4.8.2 4.8.2.1 Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105 Analog Front End (AFE) Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106 AFE Attenuation Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107 Signal Processor (DSP) Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109 Transmit Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 Receive Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .111 Programmable Coefficients for Transmit and Receive . . . . . . . . . . . . .113 Tone Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Four Signal Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Sequence Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114 Control Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117 Tone Filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .118 Tone Level Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 DTMF Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120 Speakerphone Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122 Attenuation Control Unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123 Speakerphone Test Function and Self Adaption . . . . . . . . . . . . . . . . . .124 Speech Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124 Background Noise Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .126 Speech Comparators (SC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127 Speech Comparator at the Acoustic Side (SCAE) . . . . . . . . . . . . . . .128 Speech Comparator at the Line Side (SCLE) . . . . . . . . . . . . . . . . . .131 Automatic Gain Control of the Transmit Direction (AGCX) . . . . . . . .133 Automatic Gain Control of the Receive Direction (AGCR) . . . . . . . . . . .136 Speakerphone Coefficient Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138 Controlled Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 Voice Data Manipulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140 Test Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .142 Programming of the Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143 Indirect Programming of the Codec (SOP, COP, XOP) . . . . . . . . . . . .143 Description of the Command Word (CMDW) . . . . . . . . . . . . . . . . . . .144 Direct Programming of the Codec . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 CRAM Back-Up Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146 Data Sheet 2001-03-07 PSB 21391 PSB 21393 Table of Contents Page 4.8.3 Reference Tables for the Register and CRAM Locations . . . . . . . . . . .148 5 5.1 5.1.1 5.1.2 5.1.3 Clock Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157 Jitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Jitter on IOM-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 Jitter on UPN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 Jitter on MCLK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158 6 6.1 6.2 6.3 6.4 6.5 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159 Reset Source Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .160 Undervoltage Detection (VDDDET) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161 External Reset Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Software Reset Register (SRES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Pin Behavior during Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163 7 7.0.1 7.0.2 7.0.3 7.0.4 7.0.5 7.0.6 7.0.7 7.0.8 7.0.9 7.0.10 7.0.11 7.0.12 7.0.13 7.0.14 7.0.15 7.0.16 7.0.17 7.0.18 7.0.19 7.0.20 7.1 7.1.1 7.1.2 7.1.3 7.1.4 7.1.5 7.1.6 7.1.7 Detailed Register Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164 XFIFO - Transmit FIFO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170 ISTAH - Interrupt Status Register HDLC . . . . . . . . . . . . . . . . . . . . . . . .171 MASKH - Mask Register HDLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 STAR - Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172 CMDR - Command Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173 MODEH - Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174 EXMR- Extended Mode Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175 TIMR - Timer Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176 SAP1 - SAPI1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177 RBCL - Receive Frame Byte Count Low . . . . . . . . . . . . . . . . . . . . . . . .178 SAP2 - SAPI2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178 RBCH - Receive Frame Byte Count High . . . . . . . . . . . . . . . . . . . . . . .179 TEI1 - TEI1 Register 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179 RSTA - Receive Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .180 TEI2 - TEI2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181 TMH -Test Mode Register HDLC . . . . . . . . . . . . . . . . . . . . . . . . . . . . .182 CIR0 - Command/Indication Receive 0 . . . . . . . . . . . . . . . . . . . . . . . . .182 CIX0 - Command/Indication Transmit 0 . . . . . . . . . . . . . . . . . . . . . . . .184 CIR1 - Command/Indication Receive 1 . . . . . . . . . . . . . . . . . . . . . . . . .184 CIX1 - Command/Indication Transmit 1 . . . . . . . . . . . . . . . . . . . . . . . .185 Transceiver, Interrupt and General Configuration Registers . . . . . . . . . . . 186 TR_CONF0 - Transceiver Configuration Register . . . . . . . . . . . . . . . . .186 TR_CONF1 - Receiver Configuration Register . . . . . . . . . . . . . . . . . . .187 TR_CONF2 - Transmitter Configuration Register . . . . . . . . . . . . . . . . .187 TR_STA - Transceiver Status Register . . . . . . . . . . . . . . . . . . . . . . . . .188 TR_CMD - Transceiver Command Register . . . . . . . . . . . . . . . . . . . . .189 ISTATR - Interrupt Status Register Transceiver . . . . . . . . . . . . . . . . . .190 MASKTR - Mask Transceiver Interrupt . . . . . . . . . . . . . . . . . . . . . . . . .190 Data Sheet 2001-03-07 PSB 21391 PSB 21393 Table of Contents 7.1.8 7.1.9 7.1.10 7.1.11 7.1.12 7.1.13 7.2 7.2.1 7.2.2 7.2.3 7.2.4 7.2.5 7.2.6 7.2.7 7.2.8 7.2.9 7.2.10 7.2.11 7.2.12 7.2.13 7.2.14 7.2.15 7.2.16 7.2.17 7.2.18 7.2.19 7.2.20 7.3 7.3.1 7.3.2 7.3.3 7.3.4 7.3.5 7.3.6 7.3.7 7.3.8 7.3.9 7.3.10 7.3.11 7.3.12 7.3.13 7.3.14 Data Sheet Page ISTA - Interrupt Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191 MASK - Mask Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 MODE1 - Mode1 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192 MODE2 - Mode2 Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194 ID - Identification Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 SRES - Software Reset Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195 IOM-2 and MONITOR Handler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196 CDAxy - Controller Data Access Register xy . . . . . . . . . . . . . . . . . . . . .196 XXX_TSDPxy - Time Slot and Data Port Selection for CHxy . . . . . . . .197 CDAx_CR - Control Register Controller Data Access CH1x . . . . . . . . .198 CO_CR - Control Register Codec Data . . . . . . . . . . . . . . . . . . . . . . . . .199 TR_CR - Control Register Transceiver Data . . . . . . . . . . . . . . . . . . . . .199 HCI_CR - Control Register for HDLC and CI1 Data . . . . . . . . . . . . . . .200 MON_CR - Control Register Monitor Data . . . . . . . . . . . . . . . . . . . . . .200 SDSx_CR - Control Register Serial Data Strobe x . . . . . . . . . . . . . . . .201 IOM_CR - Control Register IOM Data . . . . . . . . . . . . . . . . . . . . . . . . . .202 MCDA - Monitoring CDA Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .203 STI - Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . . . . . . . .204 ASTI - Acknowledge Synchronous Transfer Interrupt . . . . . . . . . . . . . .205 MSTI - Mask Synchronous Transfer Interrupt . . . . . . . . . . . . . . . . . . . .205 SDS_CONF - Configuration Register for Serial Data Strobes . . . . . . . .206 MOR - MONITOR Receive Channel . . . . . . . . . . . . . . . . . . . . . . . . . . .206 MOX - MONITOR Transmit Channel . . . . . . . . . . . . . . . . . . . . . . . . . . .206 MOSR - MONITOR Interrupt Status Register . . . . . . . . . . . . . . . . . . . .207 MOCR - MONITOR Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . .208 MSTA - MONITOR Status Register . . . . . . . . . . . . . . . . . . . . . . . . . . . .209 MCONF - MONITOR Configuration Register . . . . . . . . . . . . . . . . . . . . .209 Codec Configuration Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .210 General Configuration Register (GCR) . . . . . . . . . . . . . . . . . . . . . . . . .210 Programmable Filter Configuration Register (PFCR) . . . . . . . . . . . . . .211 Tone Generator Configuration Register (TGCR) . . . . . . . . . . . . . . . . . .212 Tone Generator Switch Register (TGSR) . . . . . . . . . . . . . . . . . . . . . . .213 AFE Configuration Register (ACR) . . . . . . . . . . . . . . . . . . . . . . . . . . . .214 AFE Transmit Configuration Register (ATCR) . . . . . . . . . . . . . . . . . . . .215 AFE Receive Configuration Register (ARCR) . . . . . . . . . . . . . . . . . . . .216 Data Format Register (DFR) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .217 Data Source Selection Register (DSSR) . . . . . . . . . . . . . . . . . . . . . . . .218 Extended Configuration (XCR) and Status (XSR) Register . . . . . . . . . .219 Mask Channel x Register (MASKxR) . . . . . . . . . . . . . . . . . . . . . . . . . . .220 Test Function Configuration Register (TFCR) . . . . . . . . . . . . . . . . . . . .221 CRAM Control (CCR) and Status (CSR) Register . . . . . . . . . . . . . . . . .221 CRAM (Coefficient RAM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .223 2001-03-07 PSB 21391 PSB 21393 Table of Contents 8 8.1 8.1.1 8.1.2 8.1.3 8.1.4 8.1.5 8.1.6 8.1.7 8.1.7.1 8.1.8 8.1.9 8.2 Page 8.3 8.3.1 8.3.2 8.3.3 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227 Electrical Characteristics (general) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 DC-Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227 Capacitances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .228 Oscillator Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .229 AC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .230 IOM-2 Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .231 Microcontroller Interface Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .233 Serial Control Interface (SCI) Timing . . . . . . . . . . . . . . . . . . . . . . . . .233 Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .234 Undervoltage Detection Characteristics . . . . . . . . . . . . . . . . . . . . . . . .234 Electrical Characteristics (Transceiver) 236 Electrical Characteristics (Codec) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238 DC Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .238 Analog Front End Input Characteristics . . . . . . . . . . . . . . . . . . . . . . . . .240 Analog Front End Output Characteristics . . . . . . . . . . . . . . . . . . . . . . .240 9 Package Outlines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .242 Data Sheet 2001-03-07 PSB 21391 PSB 21393 Overview 1 Overview The SCOUT-P or SCOUT-PX respectively integrates all necessary functions for the completion of a cost effective digital voice terminal solution. Please note: Throughout the whole document “SCOUT™“refers to “SCOUT™-P“ and “SCOUT™-PX“ The SCOUT combines the functionality of the ARCOFI®-BA PSB 2161 (Audio Ringing Codec Filter Basic Function) or ARCOFI®-SP PSB 2163 (Audio Ringing Codec Filter with Speakerphone) respectively and the SmartLink-P PSB 2197 (Subscriber Access Controller for UPN Terminals) or ISAC®-P TE PSB 2196 (ISDN Subscriber Access Controller for UPN Terminals in TE mode) respectively on a single chip. The SCOUT-P is suited for the use in basic PBX voice terminals just as it is, and in combination with an additional device on the modular IOM®-2 interface, in high end featurephones e.g. with acoustic echo cancellation. The SCOUT-PX PSB 21393 is an extended SCOUT-P PSB 21391 which provides the speakerphone performance of the ARCOFI-SP PSB 2163. The transceiver implements the subscriber access functions for a digital terminal to be connected to a two wire UPN interface. It covers complete layer-1 and basic layer-2 functions for digital terminals. The codec performs encoding, decoding, filtering functions and tone generation (ringing, audible feedback tones and DTMF signal). An analog front end offers three analog inputs and two analog outputs with programmable amplifiers. The IOM-2 interface allows a modular design with functional extensions (e.g. acoustic echo cancellation, tip/ring extension, S/T-interface option, terminal repeater) by connecting other voice/data devices to the SCOUT. A serial microcontroller interface (SCI) is supported. A clock signal and a reset input and output pin complete the microcontroller interface. The SCOUT is a CMOS device offered in a P-MQFP-44 package and operates with a 3.3V or 5V supply. Data Sheet 1 2001-03-07 PSB 21391 PSB 21393 Overview Comparison of the SCOUT with the two chip solution SmartLink -P and ARCOFI-BA; -SP SCOUT SmartLink -P / ARCOFI Operating modes TE TE, TR, HDLC Cont. Supply voltage 3.3V ± 5 % or 5V ± 5 % 5V ± 5 % Technology CMOS CMOS, BICMOS Package P-MQFP-44 P-DSO-28 / P-DSO-28 Transformer ratio for receiver and transmitter 1:1 (3.3V) or 2:1 (5V) 2:1 (5V) Transceiver Output Driver Slower slew rate compared with SmartLink by slowed down output drivers Test loops Test loop2, 3 Test loop2, 3 Microcontroller Interface Serial (SCI) Serial (SCI) Microcontroller clock Provided Provided ( 7.68, 3.84, 0.96MHz, ( 7.68, 3.84, 1,92, 0.96MHz) disabled or 15.36, 7.68, 1.92 MHz, disabled if double clock rate selected) Register address space 256 byte (32 byte FIFO, 96 4 controlreg., 2 statusreg., 4 byte configuration, 128 byte byte FIFO / CRAM 12 byte configuration, 128 byte CRAM Codec CRAM access (128 byte) Indirect and direct addressing (general purpose RAM) Indirect addressing Command structure of the register access Header/ address(command)/data SmartLink specific full duplex structure Controller data access to IOM-2 timeslots All timeslots; various possibilities of data access Not provided Data control and manipulation Various possibilities of data B-channel mute and loop back control and data manipulation (enable/ disable, shifting, looping, switching) Transceiver Data Sheet 2 2001-03-07 PSB 21391 PSB 21393 Overview SCOUT SmartLink -P / ARCOFI IOM-2 IOM-2 Interface Double clock (DCL), Double clock (DCL), bit clock (BCL), bit clock pin (BCL), serial data strobe 1 (SDS1) serial data strobe (SDS) serial data strobe 2 (SDS2/ RSTO) Monitor channel programming Provided (MON0 or 1 or 2) Not provided C/I channels CI0 (4bit), CI1 (4/6bit) CI0 (4bit), CI1 (Status of 3bit) Layer 1 state machine Equivalent to SmartLink State machine in software Possible Not possible IDSL (144kBit/s) Provided (HDLC, SDS) Not provided HDLC support D- and B- channels; D- channel protocol Non-auto mode, transparent mode 0-2, extended transparent mode FIFO size 64 bytes per direction with programmable FIFO thresholds 2x4 bytes per direction Undervoltage detection Provided Provided Reset Sources RST Input VDDDET Watchdog C/I Code Change EAW Pin Software Reset RST Input VDDDET Watchdog Pulse width output LCD contrast Not provided Provided Codec Analog inputs 1 single ended, 2 differential 1 single ended, 2 differential Band gap reference Externally buffered Internally buffered Max. AFE gain transmit (guaranteed transmission characteristics) 36 dB differential inputs 24 dB single ended input 42 dB differential inputs 24 dB single ended input Analog gain steps earpiece 3 dB 6 dB Data Sheet 3 2001-03-07 PSB 21391 PSB 21393 Overview SCOUT SmartLink -P / ARCOFI Status indication Register status bits Piezo pins AGC initialization Initial value Maximum gain Voice data manipulation Three party conferencing (adding receive and transmit data) Voice monitoring on IOM-2 Three party conferencing (adding receive data) A-/µ-Law, 8 or 16 bit linear A-/µ-Law, 16 bit linear Speakerphone Voice data formats Voice monitoring on piezo output Mask register for voice data Provided Not provided Tone Generator Output Loudspeaker, earpiece, piezo pins Loudspeaker, earpiece Direct tone generator output Provided Provided to loudspeaker Tone generator signal is attenuated by -6dB compared to the ARCOFI; extended gain range (-24.5, -27.5dB) in the loudspeaker amplifier control setting Saturation amplification of tone filter, i.e. CRAM Parameter GE Data Sheet As specified Adjusted to fix value 4 2001-03-07 PSB 21391 PSB 21393 Siemens Codec with UPNTransceiver SCOUT-P, SCOUT-PX Version 1.3 1.1 CMOS Features • Serial control interface (SCI) • IOM-2 interface in TE mode, single/double clock, two serial data strobe signals • Various possibilities of microcontroller data access, data control and data manipulation to all IOM-2 timeslots • Power supply 3.3 V or 5 V • Monitor channel handler (master/slave) • • • • P-MQFP-44-1 Sophisticated power management for restricted power mode Programmable microcontroller clock output and reset (input/output) pins Undervoltage detection and power-on reset generation Advanced CMOS technology Transceiver part • Two wire UPN transceiver with 2B+D channels in half-bauded AMI coding. Fully compatible to UP0 but for reduced loop length • Conversion of the frame structure between the UPN interface and IOM-2 • Receive timing recovery • Continuously adapted receive thresholds • Activation and deactivation procedures with automatic activation from power down state • HDLC controller. Operating in non-auto mode, transparent mode 0-2 or extended transparent mode. Access to B1, B2 or D channels or the combination of them e.g. for 144 kbit/s data transmission (2B+D) Type Package PSB 21391 SCOUT-P P-MQFP-44-1 PSB 21393 SCOUT-PX P-MQFP-44-1 Data Sheet 5 2001-03-07 PSB 21391 PSB 21393 Overview • FIFO buffer with 64 bytes per direction and programmable FIFO thresholds for efficient transfer of data packets • D-channel access control • Implementation of IOM-2 MONITOR and C/I-channel protocol to control peripheral devices • Realization of layer 1 state machine in software possible • Watchdog timer • Programmable reset sources • Test loops and functions Codec part • • • • • • • • • • • • • • • Applications in digital terminal equipment featuring voice functions Digital signal processing performs all CODEC functions Fully compatible with the ITU-T G.712 and ETSI (NET33) specification PCM A-Law/µ-Law (ITU-T G.711) and 8/16-bit linear data; maskable codec data Flexible configuration of all internal functions Three analog inputs for the handset microphone, the speakerphone and the headset Two differential outputs for a handset earpiece (200 Ω) and a loudspeaker (50 Ω for 5V power supply, 25 Ω for 3.3V power supply) Flexible test and maintenance loopbacks in the analog front end and the digital signal processor Independent gain programmable amplifiers for all analog inputs and outputs Full digital speakerphone (SCOUT-PX PSB 21393 only) and loudhearing support without any external components (speakerphone test and optimization function is available) Enhanced voice data manipulation for features like: - Three-party conferencing - Voice monitoring Two transducer correction filters Side tone gain adjustment Flexible DTMF, tone and ringing generator Direct and indirect CRAM access Data Sheet 6 2001-03-07 PSB 21391 PSB 21393 Overview BCL FSC DCL V SSPLL V DDPLL reserved reserved V SSL V DDL LIa Pin Configuration LIb 1.2 33 32 31 30 29 28 27 26 25 24 23 VDDSEL 34 22 DU VDDDET 35 21 DD VDDA 36 20 SDX VSSA 37 19 SDR VREF 38 18 SCLK BGREF 39 17 VSSD AXI 40 16 VDDD MIN2 41 15 EAW MIP2 42 14 XTAL1 MIN1 43 13 XTAL2 MIP1 44 12 MCLK 1 2 3 4 5 6 7 8 9 10 11 V DDP LSP V SSP LSN HOP HON CS INT RST RSTO/SDS2 SDS1 SCOUT-P(X) PSB 21391 (PSB 21393) P-MQFP-44 mqfp44_pin_upn.vsd Figure 1 Pin Configuration Data Sheet 7 2001-03-07 PSB 21391 PSB 21393 Overview 1.3 Logic Symbol IOM-2 Interface 5 VDD 5 VSS VDDSEL DD VREF BGREF DU FSC DCL BCL SDS1 RSTO/ SDS2 Analog Front End RST AXI VDDDET MIP1 MIN1 LIa MIP2 LIb MIN2 XTAL2 HOP HON XTAL1 UPN Interface 15.36 MHz EAW LSP LSN CS INT MCLK SCLK SDR SDX Serial Control Interface (SCI) VDD: 5 separate power pins (VDDL,VDDD,VDDA,VDDP,VDDPLL) VSS: 5 separate ground pins (VSSL,VSSD,VSSA,VSSP,VSSPLL) logsym_upn.vsd Figure 2 Logic Symbol of the SCOUT in P-MQFP-44 Data Sheet 8 2001-03-07 PSB 21391 PSB 21393 Overview 1.4 Pin Definitions and Function Table 1 Pin No. Symbol Input (I) Output (O) Open Drain (OD) Function Power supply (3.3 V or 5 V ± 5 %) 26 VDDL VDDD VDDA VDDP VDDPLL VSSL VSSD VSSA VSSP VSSPLL – Ground for internal PLL 34 VDDSEL I VDD Selection ’0’: 3.3 V supply voltage ’1’: 5 V supply voltage 31 16 36 1 27 30 17 37 3 – Supply voltage for line driver – Supply voltage for digital parts – Supply voltage for analog parts – Supply voltage for loudspeaker – Supply voltage for internal PLL – Ground for line driver – Ground for digital parts – Ground for analog parts – Ground for loudspeaker IOM-2 Interface 21 DD I/OD/O Data Downstream 22 DU I/OD/O Data Upstream 25 FSC I/O Frame Synchronization Clock (8 kHz) 24 DCL I/O Data Clock (double clock, 1.536 MHz) 23 BCL O Bit Clock (768kHz) 11 SDS1 O Programmable strobe signal or bit clock 10 RSTO/ SDS2 OD O Reset Output (active low) Strobe signal for each IOM® time slot and/or D channel indication (programmable) RESET 9 RST 35 VDDDET I Data Sheet I Reset (active low) VDD Detection enable (active low) 9 2001-03-07 PSB 21391 PSB 21393 Overview Table 1 Pin No. Symbol Input (I) Output (O) Open Drain (OD) Function Transceiver 32 33 LIa LIb I/O I/O UPN transceiver Line Interface 13 14 XTAL2 XTAL1 OI I Oscillator output Oscillator or 15.36 MHz input 15 EAW I External Awake. A low level on this input starts the oscillator from the power down state and generates a reset pulse if enabled (see chapter 7.1.10) In addition an interrupt request is generated at pin INT. Microcontroller Interface 7 CS I Chip Select (active low) 8 INT OD Interrupt request (active low) 12 MCLK O Microcontroller Clock 18 SCLK I Clock for the serial control interface 19 SDR I Serial Data Receive 20 SDX OD/O Serial Data Transmit Data Sheet 10 2001-03-07 PSB 21391 PSB 21393 Overview Table 1 Pin No. Symbol Input (I) Output (O) Open Drain (OD) Function Analog Frontend 38 VREF O 2.4V Reference voltage for biasing external circuitry. An external capacity of ≥ 100nF has to be connected. 39 BGREF I/O Reference Bandgap voltage for internal references. An external capacity of ≥ 22nF has to be connected. 40 AXI I Single-ended Auxiliary Input 44 43 MIP1 MIN1 I I Symmetrical differential Microphone Input 1 42 41 MIP2 MIN2 I I Symmetrical differential Microphone Input 2 5 6 HOP HON O O Differential Handset earpiece output for 200 Ω transducers 2 4 LSP LSN O O Differential Loudspeaker output for 50 Ω or 25 Ω loudspeaker using a power supply of 5 V or 3.3 V respectively Reserved Pins 28 reserved I This input is not used for normal operation and must be connected to VDD. 29 reserved I This input is not used for normal operation and must be connected to VSS. Data Sheet 11 2001-03-07 PSB 21391 PSB 21393 Overview 1.5 Typical Applications The SCOUT can be used in a variety of applications like • • • • • • PBX voice terminal (Figure 3) PBX voice terminal with speakerphone (Figure 4) PBX voice terminal as featurephone with acoustic echo cancellation (Figure 5) PBX voice terminal with tip/ring extension (Figure 6) UPN-terminal repeater (Figure 7) UPN-terminal with S/T-interface option (Figure 8) SCOUT-P UPN Interface SCI µC pbx_voice_upn.vsd Figure 3 PBX Voice Terminal Data Sheet 12 2001-03-07 PSB 21391 PSB 21393 Overview UPN Interface SCOUT-PX SCI µC voice_te_upn.vsd Figure 4 PBX Voice Terminal with Speakerphone UPN Interface SCOUT-P IOM-2 SCI µC ACE vt_ace_upn.vsd Figure 5 PBX Voice Terminal as Featurephone with Acoustic Echo Cancellation Data Sheet 13 2001-03-07 PSB 21391 PSB 21393 Overview UPN Interface SCOUT-PX IOM-2 SLIC SCI µC ARCOFI-BA Fax vt_tipring_upn.vsd Figure 6 PBX Voice Terminal with Tip/Ring Extension UPN Interface SCOUT-PX IOM-2 SCI SmartLink-P PSB 2197 µC TR-Mode UPN Terminal 2 UPN Terminal 1 upn_rep_te_upn.vsd Figure 7 UPN-Terminal Repeater Data Sheet 14 2001-03-07 PSB 21391 PSB 21393 Overview UPN Interface SCOUT-PX IOM-2 S/T Interface SCI SBCX µC PEB 2081 upn_te_st_upn.vsd Figure 8 UPN-Terminal with S/T- Interface Option Data Sheet 15 2001-03-07 PSB 21391 PSB 21393 Overview 1.6 General Functions and Device Architecture Figure 9 shows the architecture of the SCOUT containing the following functional blocks: • UPN interface transceiver with SmartLink PSB 2197 or ISAC-P TE PSB 2196 functionality respectively • Serial microcontroller interface • HDLC controller with 64 byte FlFOs per direction and programmable FIFO threshold • IOM-2 handler and interface for terminal application, MONITOR handler • Clock and timing generation • Digital PLL to synchronize IOM-2 to UPN • Reset generation (watchdog timer, under voltage detection) • Analog Front End (AFE) of the codec part • Digital Signal Processor (DSP) for codec/filter functions, tone generation, voice data manipulation and speakerphone function (SCOUT-PX) These functional blocks are described in the following chapters. Data Sheet 16 2001-03-07 PSB 21391 PSB 21393 Overview VR E F BGR E F AXI MIP1 MIN1 MIP2 MIN2 VR E F AINMUX AMI A/D D/A Dec Int Dec Int L P-F ilter F requency Correction F ilter Digital Gain Adjus tment S peakerphone F unction T one Generator Codec Data IOM-2 Handler IOM-2 Interface DD HDLC HDLC L APD T rans - R ecei- Controller S tatus mitter ver Command R egis ter F IF O X-F IF O R -F IF O Controller HDLCData FSC MUX Microcontroller Interface C/I MONIT OR Handler R es et MCLK Interrupt VDDDE T S -Data C/I-Data T rans c. Control / Config. - T rans ceiver PN DPLL Generation OS C LIa L Ib XT AL1 XT AL 2 2001-03-07 17 Data Sheet Controller D ata Acces s S CI VD DS E L T IC B us Data T IC DU H DL C Control C/I D ata C/I D ata E AW S idetone Codec Control / Config. DS P IN T U VDD x VS S x Monitor Data VDD DE T H DL C D ata Monitor Data MCL K ALS AHO AF E RST B CL S DS 1 S DS 2 S DX S DR S CL K T IC B us Data RSTO D CL CS LS P LS N HOP HON AR CHIT -U.VS D D ata S ource S election, Voice Data Manipulation (Coding, Mas king, Conferencing) Figure 9 Architecture of the SCOUT PSB 21391 PSB 21393 Interfaces 2 Interfaces The SCOUT provides the following interfaces: • Serial microcontroller interface together with a reset and microcontroller clock generation. • IOM-2 interface as an universal backplane for terminals • UPN interface towards the two wire subscriber line • Analog Front End (AFE) as interface between the analog transducers and the digital signal processor of the codec part The microcontroller and IOM-2 interface are described in chapter 2.1 or 2.2 respectively. The UPN interface is described in the chapter 2.3, the analog front end (AFE) in chapter 4.1 Data Sheet 18 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.1 Microcontroller Interface The SCOUT supports a serial microcontroller interface. For applications where no controller is connected to the SCOUT microcontroller interface programming is done via the IOM-2 MONITOR channel from a master device. In such applications the SCOUT operates in the IOM-2 slave mode (refer to the corresponding chapter of the IOM-2 MONITOR handler). The interface selections are all done by pinstrapping. The possible interface selections are listed in table 2. The selection pins are evaluated when the reset input RST or a reset of the undervoltage detection is released. For the pin levels stated in the tables the following is defined: ’High’: dynamic pin value which must be ’High’ when the pin level is evaluated VDD, VSS: static ’High’ or ’Low’ level Table 2 Interface Selection PIN CS Interface Type/Mode ‘High’ Serial Control Interface (SCI) VSS IOM-2 MONITOR Channel (Slave Mode) The mapping of all accessible registers can be found in figure 82 in chapter 7. The microcontroller interface also consists of a microcontroller clock generation at pin MCLK and an interrupt request at pin INT. Data Sheet 19 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.1.1 Serial Control Interface (SCI) The serial control interface (SCI) is compatible to the SPI interface of Motorola or Siemens C510 family of microcontrollers. The SCI consists of 4 lines: SCLK, SDX, SDR and CS. Data are transferred via the lines SDR and SDX at the rate given by SCLK. The falling edge of CS indicates the beginning of a serial access to the registers. Incoming data is latched at the rising edge of SCLK and shifts out at the falling edge of SCLK. Each access must be terminated by a rising edge of CS. Data is transferred in groups of 8 bits with the MSB first. Figure 10 shows the timing of a one byte read/write access via the serial control interface. Data Sheet 20 2001-03-07 PSB 21391 PSB 21393 Interfaces Figure 10 Serial Control Interface Timing Data Sheet 21 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.1.1.1 Programming Sequences The principle structure of a read/write access to the SCOUT registers via the serial control interface is shown in figure 11. write sequence: write byte 2 header SDR 7 0 0 7 read sequence: byte 3 address (command) 6 write data 0 7 0 7 0 read byte 2 header SDR 7 1 0 7 address (command) 6 SDX byte 3 0 read data Figure 11 Serial Command Structure A new programming sequence starts with the transfer of a header byte. The header byte specifies different programming sequences allowing a flexible and optimized access to the individual functional blocks of the SCOUT. The possible sequences are listed in table 3 and are described afterwards. Table 3 Header Byte Code Header Byte Sequence Type Access to 00H Cmd-Data-Data-Data ARCOFI compatible, non-interleaved Codec reg./CRAM (indirect) 08H ARCOFI compatible, interleaved 40H non-interleaved 44H 48H Sequence Adr-Data-Adr-Data CRAM (80H-FFH) interleaved 4CH Data Sheet Address Range 00H-6FH Address Range 00H-6FH CRAM (80H-FFH) 22 2001-03-07 PSB 21391 PSB 21393 Interfaces Table 3 Header Byte Code 4AH Read-/Write-only 4EH (address autoincrement) CRAM (80H-FFH) Adr-Data-Data-Data 43H Address Range 00H-6FH Read-/Write-only 41H non-interleaved 49H interleaved Address Range 00H-6FH Header 00H: ARCOFI Compatible Sequence This programming sequence is compatible to the SOP, COP and XOP command sequences of the ARCOFI. It gives indirect access to the codec registers 60H-6FH and the CRAM (80H-FFH). The codec command word (cmdw) is followed by a defined number of data bytes (data n; n = 0, 1, 4 or 8). The number of data bytes depends on the codec command word. The commands can be applied in any order and number. The coding of the different SOP, COP and XOP commands is listed in the description of the command word (CMDW) in chapter 4.8. Structure of the ARCOFI compatible sequence: defined length defined length 00H cmdw data n data 1 cmd data n data 1 Header 40H, 44H: Non-interleaved A-D-A-D Sequences The non-interleaved A-D-A-D sequences give direct read/write access to the address range 00H-6FH (header 40H) or the CRAM range 80H-FFH (header 44H) respectively and can have any length. In this mode SDX and SDR can be connected together allowing data transmission on one line. Example for a read/write access with header 40H or 44H: SDR header SDX Data Sheet wradr wrdata rdadr rdadr rddata 23 wradr wrdata rdata 2001-03-07 PSB 21391 PSB 21393 Interfaces Header 48H, 4CH: Interleaved A-D-A-D Sequences The interleaved A-D-A-D sequences give direct read/write access to the address range 00H-6FH (header 48H) or the CRAM range 80H-FFH (header 4CH) respectively and can have any length. This mode allows a time optimized access to the registers by interleaving the data on SDX and SDR. Example for a read/write access with header 48H or 4CH: SDR header wradr wrdata rdadr SDX rdadr wradr rddata rddata wrdata Header 4AH, 4EH: Read-/Write-only A-D-D-D Sequences (Address Auto increment) The A-D-D-D sequences give a fast read-/write-only access to the address range 00H6FH (header 4AH) or the CRAM range 80H-FFH (header 4EH) respectively. The starting address (wradr, rdadr) is incremented automatically after every data byte. The sequence can have any length and is terminated by the rising edge of CS. Example for a write access with header 4AH or 4EH: SDR header wradr wrdata wrdata wrdata wrdata wrdata wrdata wrdata (wradr) (wradr+1) (wradr+2) (wradr+3) (wradr+4) (wradr+5) (wradr+6) SDX Example for a read access with header 4AH or 4EH: SDR header SDX Data Sheet rdadr rddata rddata rddata rddata rddata rddata rddata (rdadr) (rdadr+1) (rdadr+2) (rdadr+3) (rdadr+4) (rdadr+5) (rdadr+6) 24 2001-03-07 PSB 21391 PSB 21393 Interfaces Header 43H: Read-/Write- only A-D-D-D Sequence This mode (header 43H) can be used for a fast access to the HDLC FIFO data. Any address (rdadr, wradr) in the range between 00h and 1F gives access to the current FIFO location selected by an internal pointer which is automatically incremented with every data byte following the first address byte. The sequence can have any length and is terminated by the rising edge of CS. Example for a write access with header 43H: SDR header wradr wrdata wrdata wrdata wrdata wrdata wrdata wrdata (wradr) (wradr) (wradr) (wradr) (wradr) (wradr) (wradr) SDX Example for a read access with header 43H: SDR header rdadr SDX rddata rddata rddata rddata rddata rddata rddata (rdadr) (rdadr) (rdadr) (rdadr) (rdadr) (rdadr) (rdadr) Header 41H: Non-interleaved A-D-D-D Sequence This sequence (header 41H) allows in front of the A-D-D-D write access a noninterleaved A-D-A-D read access. This mode is useful for reading status information before writing to the HDLC XFIFO. The termination condition of the read access is the reception of the wradr. The sequence can have any length and is terminated by the rising edge of CS. Example for a read/write access with header 41H: SDR header rdadr SDX rdadr rddata wradr wrdata wrdata wrdata (wradr) (wradr) (wradr) rddata Header 49H: Interleaved A-D-D-D Sequence This sequence (header 49H) allows in front of the A-D-D-D write access an interleaved A-D-A-D read access. This mode is useful for reading status information before writing to the HDLC XFIFO. The termination condition of the read access is the reception of the wradr. The sequence can have any length and is terminated by the rising edge of the CS line. Example for a read/write access with header 49H: SDR header SDX Data Sheet rdadr rdadr rddata wradr wrdata wrdata wrdata (wradr) (wradr) (wradr) rddata 25 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.1.2 Interrupt Structure and Logic Special events in the SCOUT are indicated by means of a single interrupt output, which requests the host to read status information from the SCOUT or transfer data from/to the SCOUT. Since only one INT request output is provided, the cause of an interrupt must be determined by the host reading the interrupt status registers of the SCOUT. The structure of the interrupt status registers is shown in figure 12. MSTI STOV21 STOV20 STOV11 STOV10 STI21 STI20 STI11 STI10 MASK ISTA ST CIC TIN WOV TRAN MOS HDLC ST CIC TIN WOV TRAN MOS HDLC INT STI STOV21 STOV20 STOV11 STOV10 STI21 STI20 STI11 STI10 ASTI ACK21 ACK20 ACK11 ACK10 CIC0 CIC1 CIR0 CI1E CIX1 RME RPF RFO XPR RME RPF RFO XPR XMR XDU XMR XDU MASKH ISTAH MASKTR LD RIC ISTATR LD RIC MRE MDR MER MIE MDA MAB MOSR MOCR Figure 12 SCOUT Interrupt Status Registers Data Sheet 26 2001-03-07 PSB 21391 PSB 21393 Interfaces Five interrupt bits in the ISTA register point at interrupt sources in the HDLC Controller (HDLC), Monitor- (MOS) and C/I- (CIC) handler, the transceiver (TRAN) and the synchronous transfer (ST). The timer interrupt (TIN) and the watchdog timer overflow (WOV) can be read directly from the ISTA register. All these interrupt sources are described in the corresponding chapters. After the SCOUT has requested an interrupt by setting its INT pin to low, the host must read first the SCOUT interrupt status register (ISTA) in the associated interrupt service routine. The INT pin of the SCOUT remains active until all interrupt sources are cleared by reading the corresponding interrupt register. Therefore it is possible that the INT pin is still active when the interrupt service routine is finished. Each interrupt indication of the interrupt status registers can selectively be masked by setting the respective bit in the MASK register. For some interrupt controllers or hosts it might be necessary to generate a new edge on the interrupt line to recognize pending interrupts. This can be done by masking all interrupts at the end of the interrupt service routine (writing FFH into the MASK register) and write back the old mask to the MASK register. A low level at pin EAW generates an interrupt indication which is set at the LD bit of the ISTATR register. If this LD bit has been set due to an level detect interrupt, the LD bit in the transceiver status register TR_STA is set additionally. Therefore pin EAW has to be connected to ’1’, if no interrupt should be generated. Data Sheet 27 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.1.3 Microcontroller Clock Generation The microcontroller clock is provided by the pin MCLK. Five clock rates are selectable by a programmable prescaler (see chapter clock generation figure 78) which is controlled by the MODE1.MCLK bit corresponding following table. By setting the clock divider selection bit (MODE1.CDS) a doubled MCLK frequency is available. The possible MCLK frequencies are listed in table 4. Table 4 MCLK Frequencies MCLK Bits MCLK Frequency with MODE1.CDS = ’0’ MCLK Frequency with MODE1.CDS = ’1’ ’00’ 3.84 MHz (default) 7.68 MHz (default) ’01’ 0.96 MHz 1.92 MHz ’10’ 7.68 MHz 15.36 MHz ’11’ disabled disabled The clock rate is changed after CS becomes inactive. Data Sheet 28 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.2 IOM-2 Interface The SCOUT supports the IOM-2 interface in terminal mode with single clock and double clock. The IOM-2 interface consists of four lines: FSC, DCL, DD and DU. The rising edge of FSC indicates the start of an IOM-2 frame. The FSC signal is generated by the receive DPLL which synchronizes to the received line frame. The DCL and the BCL output clock signals synchronize the data transfer on both data lines. The DCL is twice the bit rate, the BCL output rate is equal to the bit rate. The bits are shifted out with the rising edge of the first DCL clock cycle and sampled at the falling edge of the second clock cycle. The BCL clock together with the two serial data strobe signals (SDS1, SDS2) can be used to connect time slot oriented standard devices to the IOM-2 interface. The IOM-2 interface can be enabled/disabled with the DIS_IOM bit in the IOM_CR register. The BCL clock output can be enabled separately with the EN_BCL bit. The clock rate or frequency respectively of the IOM-signals in TE mode are: DD, DU: 768 kbit/s DCL: 1536 kHz (double clock rate); 768 kHz (single clock rate if DIS_TR = ’1’) FSC: 8 kHz. If the transceiver is disabled (TR_CONF.DIS_TR) the DCL and FSC pins become input and the HDLC and codec parts can still work via IOM-2. In this case it can be selected with the clock mode bit (IOM_CR.CLKM) between a double clock and a single clock input. Note: One IOM-2 frame has to consist of a multiple of 64 (32) DCL clocks for a double (single) clock selection. FSC DCL BCL Figure 13 Clock waveforms Data Sheet 29 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.2.1 IOM-2 Frame Structure The frame structure on the IOM-2 data ports (DU,DD) in IOM-2 terminal mode is shown in figure 14 . Figure 14 IOM-2 Frame Structure in Terminal Mode The frame is composed of three channels • Channel 0 contains 144-kbit/s of user and signaling data (2B + D), a MONITOR programming channel (MON0) and a command/indication channel (CI0) for control and programming of the layer-1 transceiver. • Channel 1 contains two 64-kbit/s intercommunication channels (IC) plus a MONITOR and command/indicate channel (MON1, CI1) to program or transfer data to other IOM2 devices. • Channel 2 is used for the TlC-bus access. Additionally channel 2 supports further IC and MON channels. Note: Each octet related to any integrated functional block can be programmed to any timeslot (see chapter 7.2.2) except the C/I0- and D- channels that are always related to timeslot 0. Data Sheet 30 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.2.2 IOM-2 Handler The IOM-2 handler offers a great flexibility for handling the data transfer between the different functional units of the SCOUT and voice/data devices connected to the IOM-2 interface. Additionally it provides a microcontroller access to all time slots of the IOM-2 interface via the four controller data access registers (CDA). Figure 15 shows the architecture of the IOM-2 handler. For illustrating the functional description it contains all configuration and control registers of the IOM-2 handler. A detailed register description can be found in chapter 7.2 The PCM data of the functional units • Codec (CO) • Transceiver (TR) and the • Controller data access (CDA) can be configured by programming the time slot and data port selection registers (TSDP). With the TSS bits (Time Slot Selection) the PCM data of the functional units can be assigned to each of the 12 PCM time slots of the IOM-2 frame. With the DPS bit (Data Port Selection) the output of each functional unit is assigned to DU or DD respectively. The input is assigned vice versa. With the control registers (CR) the access to the data of the functional units can be controlled by setting the corresponding control bits ( EN, SWAP). To avoid data collisions it has to be noticed that the C/I and D channels of the enabled transceiver are always related to time slot 3. If the monitor handler is enabled its data is related to time slot TS (2, 6 or 10) and the appropriate MR and MX bits to time slot TS+1 depending on the MCS bits of register MON_CR. The IOM-2 handler provides also access to the • MONITOR channel (MON) • C/I channels (CI0,CI1) • TIC bus (TIC) and • D- and B-channel for HDLC control The access to these channels is controlled by the registers HCI_CR and MON_CR. The IOM-2 interface with the two Serial Data Strobes (SDS1,2) is controlled by the control registers IOM_CR, SDS1_CR and SDS2_CR. The reset configuration of the SCOUT IOM-2 handler corresponds to the defined frame structure and data ports in IOM-2 terminal mode (see figure 14). Data Sheet 31 2001-03-07 32 IOMHAND.VSD CO10R CO11R CO20R CO21R CO10X CO11X CO20X CO21X x,y = 1 or 2 CO_T S DPxy CO_CR Control Codec Data (T S S , DPS , E N) Codec Data CDA10 CDA11 CDA20 CDA21 CDA R egis ter Controller Data Acces s (CDA) DD DU CDA Data CDA_T S DPxy CDA_CR x MCDA STI MS T I AS T I Control Data Acces s (T S DP, DPS , E N, S WAP, T BM, MCDA, S T I) (E N, OD) IOM-2 Interface Handler MON MON_CR T IC IOM_CR CI0 (E N, T LE N, T S S ) Data Control Monitor T IC Bus Data Dis able (DPS ,E N (T IC_DIS ) MCS ) Monitor Data Microcontroller Interface S DS 1/2_CR IOM_CR T IC B us Data IOM-2 Handler CI0 Data S DS 1 S DS 2 CI1 HDLC F IF O HCI_CR Control Control HDL C C/I1 D-, BData Data (DPS ,E N) (E N) CI1 Data Data Sheet D/B 1/B 2 Data DU DD F S C DCL B CL DD DU B 1/B 2/D - Data C/IO - Data T R _CR T R _T S DP_B2 T R _T S DP_B1 Control T rans ceiver Data Acces s (T S S , DPS , E N) T R _D_R T R _B 1_R T R _B 2_R T R _B1_X T R _B2_X T R _D_X PSB 21391 PSB 21393 Interfaces . Figure 15 Architecture of the IOM Handler 2001-03-07 T rans ceiver Data (T R ) Codec Data (CO) PSB 21391 PSB 21393 Interfaces 2.2.2.1 Controller Data Access (CDA) The IOM-2 handler provides with its four controller data access registers (CDA10, CDA11, CDA20, CDA21) a very flexible solution for the access to the 12 IOM-2 time slots by the microcontroller. The functional unit CDA (controller data access) allows with its control and configuration registers • looping of up to four independent PCM channels from DU to DD or vice versa with the four CDA registers • shifting or switching of two independent PCM channels to another two independent PCM channels on both data ports (DU, DD) • monitoring of up to four time slots on the IOM-2 interface simultaneously • microcontroller read and write access to each PCM channel The access principle which is identical for the two channel register pairs CDA10/11 and CDA20/21 is illustrated in figure 16. The index variables x,y used in the following description can be 1 or 2 for x, and 0 or 1 for y. The prefix ’CDA_’ from the register names has been omitted for simplification. To each of the four CDAxy data registers a CDA_TSDPxy register is assigned by which the time slot and the data port can be determined. With the TSS (Time Slot Selection) bits a time slot from 0...11 can be selected. With the DPS (Data Port Selection) bit the output of the CDAxy register can be assigned to DU or DD respectively. The time slot and data port for the output of CDAxy is always defined by its own CDA_TSDPxy register. The input of CDAxy depends on the SWAP bit in the control registers CRx. If the SWAP bit = ’0’ the time slot and data port for the input and output of the CDAxy register is defined by its own CDA_TSDPxy register. The data port for the CDAxy input is vice versa to the output setting for CDAxy. If the SWAP bit = ’1’, the input port and time slot of the CDAx0 is defined by the CDA_TSDP register of CDAx1 and the input port and time slot of CDAx1 is defined by the CDA_TSDP register of CDAx0. The input and output of every CDAxy register can be enabled or disabled by setting the corresponding EN (-able) bit in the control register CDAx_CR. If the input of a register is disabled the output value in the register is retained. Data Sheet 33 2001-03-07 PSB 21391 PSB 21393 Interfaces . TSa TSb DU Control Register CDAx0 0 1 1 Time Slot Selection (TSS) Enable input output (EN_I1) (EN_O1) Input Swap (SWAP) 1 1 1 1 CDAx1 1 1 0 CDA_TSDPx1 1 0 Data Port Selection (DPS) Time Slot Selection (TSS) Enable output input (EN_O0) (EN_I0) Data Port Selection (DPS) CDA_TSDPx0 CDA_CRx 0 1 DD TSa TSb IOM_HAND.FM4 x = 1 or 2; a,b = 0...11 Figure 16 Data Access via CDAx0 and CDAx1 register pairs 2.2.2.1.1 Looping and Shifting Data Figure 17 gives examples for typical configurations with the above explained control and configuration possibilities with the bits TSS, DPS, EN and SWAP in the registers TSDPxy or CDAx_CR: a) looping IOM-2 time slot data from DU to DD or vice versa (SWAP = ’0’) b) shifting data from TSa to TSb on DU and DD (SWAP = ’1’) c) switching data from TSa (DU) to TSb(DD) and TSb (DU) to TSa (DD) Data Sheet 34 2001-03-07 PSB 21391 PSB 21393 Interfaces a) Looping Data TSa TSb CDAx0 CDAx0 .TSS: TSa TSb .DPS ’0’ ’1’ .SWAP ’0’ DU DD b) Shifting Data TSa TSb DU CDAx0 CDAx0 DD .TSS: TSa .DPS ’0’ .SWAP TSb ’1’ ’1’ c) Switching Data TSa TSb CDAx0 CDAx0 .TSS: TSa .DPS ’0’ .SWAP TSb ’0’ DU DD .x = 1 or 2 ’1’ Figure 17 Examples for Data Access via CDAxy Registers a) Looping Data b) Shifting Data c) Switching Data Data Sheet 35 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.2.2.1.2 Monitoring Data Figure 18 gives an example for monitoring of two IOM-2 time slots each on DU or DD simultaneously. For monitoring on DU and/or DD the channel registers with even numbers (CDA10, CDA20) are assigned to time slots with even numbers TS(2n) and the channel registers with odd numbers (CDA11, CDA21) are assigned to time slots with odd numbers TS(2m+1) (n,m = 0...5). The user has to take care of this restriction by programming the appropriate time slots. . a) Monitoring Data EN_O: ’0’ CDA_CR1. EN_I: ’1’ DPS: ’0’ TSS: TS(2n) ’0’ ’1’ ’0’ TS(2m+1) DU CDA10 CDA11 CDA20 CDA21 TSS: TS(2n) ’1’ DPS: CDA_CR2. EN_I: ’1’ EN_O: ’0’ TS(2m+1) ’1’ ’1’ ’0’ DD n,m = 0...5 Figure 18 Example for Monitoring Data 2.2.2.1.3 Monitoring TIC Bus Monitoring the TIC bus (TS11) is handled as a special case. The TIC bus can be monitored with the registers CDAx0 by setting the EN_TBM (Enable TIC Bus Monitoring) bit in the control registers CRx. The TSDPx0 must be set to 08h for monitoring from DU or 88h for monitoring from DD respectively. Data Sheet 36 2001-03-07 PSB 21391 PSB 21393 Interfaces 2.2.2.1.4 Synchronous Transfer While looping, shifting and switching (see figure 21 and 22) the data can be accessed by the controller between the synchronous transfer interrupt (STI) and the synchronous transfer overflow interrupt (STOV). The microcontroller access to the CDAxy registers can be synchronized by means of four programmable synchronous transfer interrupts (STIxy) and synchronous transfer overflow interrupts (STOVxy) in the STI register. Depending on the DPS bit in the corresponding CDA_TSDPxy register the STIxy is generated two (for DPS=’0’) or one (for DPS=’1’) BCL clock after the selected time slot (CDA_TSDPxy.TSS). One BCL clock is equivalent to two DCL clocks. A non masked synchronous transfer overflow (STOVx0y0) interrupt is generated if the appropriate STIx1y1 is not acknowledged in time. The STIx1y1 is acknowledged in time if bit ACKx1y1 in the ASTI register is set to ’1’ one BCL clock (for DPS=’0’) or zero BCL clocks (for DPS=’1’) before the time slot which is selected for the appropriate STOVx0y0. If STIx1y1 and STOVx1y1 are not masked STOVx1y1 is only related to STIx1y1 (see example a), c) and d) of figure 20). If STIx1y1 is masked but STOVx1y1 is not masked, STOVx0y0 is related to each enabled STIxy (see example b) and d) of figure 20). Setting the corresponding bits in the MSTI (Mask Synchronous Transfer Interrupts) register masks the STIxy and the STOVxy interrupt. The interrupt structure of the synchronous transfer is shown in figure 19. Examples of the described synchronous transfer interrupt controlling are illustrated in Figure 20. A read to the STI register clears the STIxy and STOVxy interrupts. . INT ST CIC TIN WOV TRAN MOS HDLC ST CIC TIN WOV TRAN MOS HDLC MASK ISTA STOV21 STOV20 STOV11 STOV10 STI21 STI20 STI11 STI10 MSTI STOV21 STOV20 STOV11 STOV10 STI21 STI20 STI11 STI10 STI ACK21 ACK20 ACK11 ACK10 ASTI Figure 19 Interrupt Structure of the Synchronous Data Transfer Data Sheet 37 2001-03-07 PSB 21391 PSB 21393 Interfaces . : STI interrupt generated : STOV interrupt generated for a not acknowledged STI interrupt a) Interrupts for data access to time slot 0 (B1 after reset), MSTI.STI10 and MSTI.STOV10 enabled xy: CDA_TDSPxy.TSS: MSTI.STIxy: MSTI.STOVxy: 10 TS0 ’0’ ’0’ 11 TS1 ’1’ ’1’ TS11 TS0 TS1 TS2 TS3 21 TS5 ’1’ ’1’ 20 TS11 ’1’ ’1’ TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0 b) Interrupts for data access to time slot 0 (B1 after reset), STOV interrupt used as flag for "last possible CDA access"; MSTI.STI10 and MSTI.STOV20 enabled xy: CDA_TDSPxy.TSS: MSTI.STIxy: MSTI.STOVxy: 10 TS0 ’0’ ’1’ 11 TS1 ’1’ ’1’ TS11 TS0 TS1 TS2 TS3 21 TS5 ’1’ ’1’ 20 TS11 ’1’ ’0’ TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0 c) Interrupts for data access to time slot 0 and 1 (B1 and B2 after reset), MSTI.STI10, MSTI.STOV10, MSTI.STI11 and MSTI.STOV11 enabled xy: CDA_TDSPxy.TSS: MSTI.STIxy: MSTI.STOVxy: 10 TS0 ’0’ ’0’ 11 TS1 ’0’ ’0’ TS11 TS0 TS1 TS2 TS3 21 TS5 ’1’ ’1’ 20 TS11 ’1’ ’1’ TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0 d) Interrupts for data access to time slot 0 (B1 after reset), STOV20 interrupt used as flag for "last possible CDA access", STOV10 interrupt used as flag for "CDA access failed"; MSTI.STI10, MSTI.STOV10 and MSTI.STOV20 enabled xy: CDA_TDSPxy.TSS: MSTI.STIxy: MSTI.STOVxy: 10 TS0 ’0’ ’0’ 11 TS1 ’1’ ’1’ TS11 TS0 TS1 TS2 TS3 21 TS5 ’1’ ’1’ 20 TS11 ’1’ ’0’ TS4 TS5 TS6 TS7 TS8 TS9 TS10 TS11 TS0 sti_stov.vsd Figure 20 Examples for the Synchronous Transfer Interrupt Control with one enabled STIxy Data Sheet 38 2001-03-07 PSB 21391 PSB 21393 Interfaces Figure 21 shows the timing of looping TSa on DU to TSa on DD (a = 0...11) via CDAxy register. TSa is read in the CDAxy register from DU and is written one frame later on DD. . a = 0...11 FSC DU TSa TSa WR RD µC DD TSa STOV *) STI ACK STI CDAxy TSa *) if access by the µC is required Figure 21 Data Access when Looping TSa from DU to DD Data Sheet 39 2001-03-07 PSB 21391 PSB 21393 Interfaces Figure 22 shows the timing of shifting data from TSa to TSb on DU(DD). In figure 22a) shifting is done in one frame because TSa and TSb didn’t succeed direct one another (a,b = 0...9 and b ≥ a+2). In figure 22b) shifting is done from one frame to the following frame. This is the case when the time slots succeed one other (b = a+1) or b is smaller than a (b < a). a) Shifting TSa → TSb within one frame (a,b: 0...11 and b ≥ a+2) FSC DU (DD) TSa TSb TSa µC ACK *) STI STOV WR STI RD CDAxy b) Shifting TSa → TSb in the next frame (a,b: 0...11 and (b = a+1 or b
PSB 21391 H V1.3 价格&库存

很抱歉,暂时无法提供与“PSB 21391 H V1.3”相匹配的价格&库存,您可以联系我们找货

免费人工找货